Share Email Print

Proceedings Paper

Ultra-precise measurement of CO2 from space
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The experimental data on CO2 and O2 detection in atmosphere using Fabry-Perot technique are presented. The atmosphere's irradiance measurements are an important tool for the remote sensing study. We show results from lab, ground and flight testing of a new instrument called FPICC (Fabry-Perot Interferometer for Column CO2) which is intended for a very precise measurements of atmospheric carbon dioxide and oxygen. The optical setup consists of three channels. The first channel is built to measure the carbon dioxide. This channel operates using the reflected sunlight off the ground and solid Fabry-Perot etalon to restrict the measurement to light in CO2 absorption bands. The free spectral range of the etalon is calculated to be equal to the almost regular spacing between the CO2 spectral bands located near 1,571 μm, R band, where CO2 absorption is significant. The precise alignment of the transmission peaks of the Fabry-Perot etalon to the CO2 absorption lines is achieved through altering the refractive index of the material (fused silica) using its temperature dependence. The second and third channels foucs on the O2 A band (759 - 771 nm) composed of about 300 absorption lines, which vary in strength and width according to pressure and temperature. We performed measurements using solid Fabry-Perot etalons with different FSR and two different pre-filters. The first pre-filter selects a spectral range around 762 nm which is between the P and R branches, where the absorption coefficient is insensitive to temperature, but is sensitive to pressure changes and therefore to the variations in the O2 column. The second pre-filter is selecting several absorption bands between 765 and 770 nm, which are more sensitive to temperature changes. The experimental data presented show excellent agreement with our theoretical expectations. They are recorded at different gas pressures, temperatures and different weather conditions. Some of the major advantages of the optical setup are its compactness, high sensitivity, high signal-to-noise ratio, and stability.

Paper Details

Date Published: 30 December 2004
PDF: 10 pages
Proc. SPIE 5652, Passive Optical Remote Sensing of the Atmosphere and Clouds IV, (30 December 2004); doi: 10.1117/12.578521
Show Author Affiliations
William S. Heaps, NASA Goddard Space Flight Ctr. (United States)
Stephan Randolph Kawa, NASA Goddard Space Flight Ctr. (United States)
Elena Georgieva, Science Systems and Applications, Inc. (United States)
Emily Wilson, National Research Council/NASA Goddard Space Flight Ctr. (United States)

Published in SPIE Proceedings Vol. 5652:
Passive Optical Remote Sensing of the Atmosphere and Clouds IV
Si Chee Tsay; Tatsuya Yokota; Myoung-Hwan Ahn, Editor(s)

© SPIE. Terms of Use
Back to Top