Share Email Print

Proceedings Paper

Electrokinetically driven microfluidic mixing with patchwise surface heterogeneity and AC applied electric field
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper investigates two-dimensional, time-dependent electroosmotic flows driven by an AC electric field via patchwise surface heterogeneities distributed along the microchannel walls. The time-dependent flow fields through the microchannel are simulated for various patchwise heterogeneous surface patterns using the backwards-Euler time stepping numerical method. Different heterogeneous surface patterns are found to create significantly different electrokinetic transport phenomena. It is shown that the presence of oppositely charged surface heterogeneities on the microchannel walls results in the formation of localized flow circulations within the bulk flow. These circulation regions grow and decay periodically in accordance with the applied periodic AC electric field intensity. The circulations provide an effective means of enhancing species mixing in the microchannel. A suitable design of the patchwise heterogeneous surface pattern permits the mixing channel length and the retention time required to attain a homogeneous solution to be reduced significantly.

Paper Details

Date Published: 8 December 2004
PDF: 12 pages
Proc. SPIE 5591, Lab-on-a-Chip: Platforms, Devices, and Applications, (8 December 2004); doi: 10.1117/12.578428
Show Author Affiliations
Win-Jet Luo, Far East College (Taiwan)
Cheng-Feng Yue, Far East College (Taiwan)

Published in SPIE Proceedings Vol. 5591:
Lab-on-a-Chip: Platforms, Devices, and Applications
Linda A. Smith; Daniel Sobek, Editor(s)

© SPIE. Terms of Use
Back to Top