Share Email Print
cover

Proceedings Paper

Improvement of SPM nonlinear limit by chirped duobinary PolSK transmission
Author(s): Lixiu Yang; Jiayu Fan; Lutang Wang; Zhaoming Huang
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In today's terrestrial long-haul optical fiber communication systems, high channel powers are required to obtain a large transmission distance with reasonable optical amplifier spacing. In such systems, however, the presence of nonlinear effects such as the self-phase modulation (SPM) and the fiber dispersion as well as their combined effects, called SPM-induced nonlinear limitation or SPM limit, will seriously degrade the system performances in respect of the effective transmission distance and ultimately become a limiting factor in high-speed, long-haul optical fiber transmission.In this paper, a new transmission format: chirped duobinary PolSK transmission, has been proposed to generate a pre-chirped duobianry signal with fixed polarity (either positive or negative), which is modulated by a PolSK modulator. This format is based on a transmitter setup consisting of a duobinary PolSK Modulation transmitter followed by an additional phase modulator. The chirped duobinary PolSK transmission reduces the signal degradation and spectral broadening in the nonlinear regime significantly. Thus it shifts this SPM nonlinear limit to enable more relaxed dispersion compensation at high optical power compared to the conventional duobinary schemes.The simulation results show chirped duobinary PolSK transmission enlarges the dispersion limited transmission distance, increases the dispersion tolerance and overcome the SPM nonlinear limit.

Paper Details

Date Published: 11 February 2005
PDF: 9 pages
Proc. SPIE 5625, Optical Transmission, Switching, and Subsystems II, (11 February 2005); doi: 10.1117/12.576106
Show Author Affiliations
Lixiu Yang, Shanghai Univ. (China)
Jiayu Fan, Shanghai Univ. (China)
Lutang Wang, Shanghai Univ. (China)
Zhaoming Huang, Shanghai Univ. (China)


Published in SPIE Proceedings Vol. 5625:
Optical Transmission, Switching, and Subsystems II
Cedric F. Lam; Wanyi Gu; Norbert Hanik; Kimio Oguchi, Editor(s)

© SPIE. Terms of Use
Back to Top