Share Email Print
cover

Proceedings Paper

Numerical simulation and experimental study on optothermal response of multilayer biological tissue under pulse laser irradiation
Author(s): Hongqin Yang; Shusen Xie; Zukang Lu
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In this study, a novel multilayer-tissue heat transfer model for laser-induced optothermal response is presented by considering the heterogeneous properties of biological tissue. Various temperature measurement techniques for biological tissue under laser irradiation are reviewed. The advantages and limitations of each of these methods are discussed. Based on this, the experimental measurement schemes with a multiple-channel temperature probe for the optical-thermal response of mammalian skin tissue in vitro and in vivo are presented during pulse Er:YAG laser and superpulse CO2 irradiation. The effect of laser parameters, such as energy density, pulse duration and pulse repetition rate is investigated. Using finite difference method (FDM), the simulation of spatial and temporal distribution of the temperature field inside the biological tissue is investigated during and after pulse laser radiation. Experimental data are fitted and compared to the optical-thermal simulation to test the validation of the model. In addition, the impact factors and uncertainty of the measurement results are discussed. The results we had in this study can be used to predict the temperature rise inside biological tissue under pulse laser irradiation, it is a useful tool for a surgeon to optimize laser parameters before making a therapy plan. It also can predict a temperature rise or thermal damage in interstitial laser thermotherapy.

Paper Details

Date Published: 18 January 2005
PDF: 12 pages
Proc. SPIE 5630, Optics in Health Care and Biomedical Optics: Diagnostics and Treatment II, (18 January 2005); doi: 10.1117/12.575226
Show Author Affiliations
Hongqin Yang, Zhejiang Univ. (China)
Fuzhou Univ. (China)
Shusen Xie, Zhejiang Univ. (China)
Fujian Normal Univ. (China)
Zukang Lu, Zhejiang Univ. (China)


Published in SPIE Proceedings Vol. 5630:
Optics in Health Care and Biomedical Optics: Diagnostics and Treatment II
Britton Chance; Mingzhe Chen; Arthur E. T. Chiou; Qingming Luo, Editor(s)

© SPIE. Terms of Use
Back to Top