Share Email Print
cover

Proceedings Paper

Design and fabrication of a variable optical attenuator based on polymer-dispersed liquid crystal
Author(s): Jun She; Su Xu; Tao Tao; Qian Wang
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

In order to obtain a low polarization dependent loss (PDL) and a large attenuation range simultaneously, an optimal design and fabrication of a polymer-dispersed liquid crystal (PDLC) based variable optical attenuator (VOA) is presented. First, an optimal diameter of the liquid crystal droplets is determined by the anomalous diffraction approach (ADA). This optimal diameter gives maximal scattering and thus a large attenuation range is achieved with a relatively thin liquid crystal cell. Secondly, the fabrication of PDLC cell is carried out. The influence of the ultraviolet (UV) curing condition on the morphology of the LC droplets is investigated. For a given liquid crystal concentration, the optimal UV curing power is obtained after a series of statistically designed experiments. Finally, an optical configuration of the PDLC based VOA is presented. Measurements of the attenuation and the PDL are carried out with this configuration. The measured results show that the device has a typical attenuation range of 25dB. The corresponding PDL is nearly 1dB and the insertion loss is 1.8dB. The threshold voltage is 8Vrms and the saturation voltage is 40Vrms. From these measured results, one can see that the fabricated VOA based on PDLC is much more practical for optical communications as compared to the existing ones.

Paper Details

Date Published: 7 February 2005
PDF: 9 pages
Proc. SPIE 5636, Holography, Diffractive Optics, and Applications II, (7 February 2005); doi: 10.1117/12.574427
Show Author Affiliations
Jun She, Zhejiang Univ. (China)
Su Xu, Zhejiang Univ. (China)
Tao Tao, Zhejiang Univ. (China)
Qian Wang, Zhejiang Univ. (China)


Published in SPIE Proceedings Vol. 5636:
Holography, Diffractive Optics, and Applications II
Yunlong Sheng; Dahsiung Hsu; Chongxiu Yu; Byoungho Lee, Editor(s)

© SPIE. Terms of Use
Back to Top