Share Email Print
cover

Proceedings Paper

Numerical analysis of the temperature field in PbS detector by pulse laser irradiation
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The time-dependent optical reflectivity of HgCdTe detector at 0.63μm has been measured during irradiating by a 1.06-μm Q-switched Nd:YAG laser of 50-ns duration. The reflectivity was observed to increase abruptly to a value and to remain at that value for a period of time, which ranged from several nanoseconds to several hundreds of nanoseconds, depending on the irradiating pulse intensity. The duration of the “flat-top” portion of the reflectivity waveform represents the total time that the surface is melting. Subsequently, the reflectivity dropped abruptly to a value less than the initial one. The difference shows that the damage takes place in the incidence point. By measuring the time-resolved reflectivity and simulating physical structures of PbS and HgCdTe detector, whose dynamic mathematical model was created. By solving the equations of energy transport and thermal diffusion, the temperature rises of PbS and HgCdTe detector irradiated by pulse laser beam were studied, the relationship of power and temperature rises were discussed and the numerical solutions of dynamic temperature field were obtained. The experimental result of the reflectivity of HgCdTe detector was compared with calculated result. The results show finite element analysis is effective in solving the temperature field.

Paper Details

Date Published: 13 January 2005
PDF: 8 pages
Proc. SPIE 5629, Lasers in Material Processing and Manufacturing II, (13 January 2005); doi: 10.1117/12.573221
Show Author Affiliations
Song Li, Beijing Institute of Technology (China)
Jinjing Feng, Beijing Institute of Technology (China)
Jixiang Yan, Beijing Institute of Technology (China)
Shouhuan Zhou, North China Research Institute of Electro-Optics (China)


Published in SPIE Proceedings Vol. 5629:
Lasers in Material Processing and Manufacturing II
ShuShen Deng; Akira Matsunawa; Y. Lawrence Yao; Minlin Zhong, Editor(s)

© SPIE. Terms of Use
Back to Top