Share Email Print
cover

Proceedings Paper

Cytochrome c at charged interfaces studied by resonance Raman and surface-enhanced resonance Raman spectroscopy
Author(s): Peter Hildebrandt
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The effect of electrostatic fields on the structure of cytochrome c bound to charged interfaces was studied by resonance Raman and surface enhanced resonance Raman spectroscopy. Binding of this heme protein to the Ag electrode or heteropolytungstates which may be regarded as simple model systems for biological interfaces establishes an equilibrium between two conformational states (I II). In state I the structure and the redox potential are the same as for the uncomplexed cytochrome c. In state II however the heme pocket assumes an open structure and the axial iron Met80 bond is weakened leading to thennal coordination equilibrium between the fivecoordinated high spin and the sixcoordinated low spin configuration. These structural changes are accompanied by a decrease of the redox potential by 420 mV. The structural rearrangement of the heme pocket in state II is presumably initiated by the dissociation of the internal salt bridge of Lys13 due to electrostatic interactions with the negatively charged surfaces of the model systems. From detailed Raman spectroscopic studies characteristic spectral properties of the states I and II were identified. Based on these findings the interactions of cytochrome c with phospholipid vesicles as well as with its physiological reaction partner cytocbrome c oxidase were analysed. A systematic study of the cytochmme c/phospholipid system by varying the lipid composition and the temperature revealed mutual structural changes in both the lipid and the protein structure.

Paper Details

Date Published: 1 May 1991
PDF: 10 pages
Proc. SPIE 1403, Laser Applications in Life Sciences, (1 May 1991); doi: 10.1117/12.57305
Show Author Affiliations
Peter Hildebrandt, Max Planck Institut fuer Strahlenchemie (Germany)


Published in SPIE Proceedings Vol. 1403:
Laser Applications in Life Sciences

© SPIE. Terms of Use
Back to Top