Share Email Print
cover

Proceedings Paper

Evaluation of UVA-induced oxidative stress using a highly sensitive chemiluminescence method
Author(s): Bo Gao; Da Xing; Debin Zhu
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Oxidative stress is mainly mediated by reactive oxygen species (ROS). Evaluation of oxidative stress is helpful for choosing an appropriate method to protect the organism from the oxidative damage. In this study, a highly sensitive and simple chemiluminescence method is presented for the evaluation of radiation-induced oxidative stress in human peripheral lymphocytes. The lymphocytes were irradiated by ultraviolet radiation (320-400nm, UVA) with different doses. The ROS generated by the lymphocytes was detected by chemiluminescence method, using a highly sensitive chemiluminescence probe 2-methyl-6-(p-methoxyphenyl)-3,7-dihydroimidazo[1,2-α] pyrazin-3-one (MCLA). The cell viability was detected with Cell Counting Kit-8 (CCK-8). The malondialdehyde (MDA), a marker of lipid peroxidation and oxidative stress, and the total antioxidant capacity (TAC), a parameter that is taken as evidence of oxidative stress, were measured too. The results show that both chemiluminescence intensity, cell mortality and MDA concentration of lymphocytes grow with the increase of UVA dose range from 0.5 to 8 J/cm2, while the TAC decreases. There exists a positive relationship between cell oxidative damage degree and the chemiluminescence intensity of lymphocytes. This highly sensitive chemiluminescence method would potentially provide an easy way to evaluate the level of UVA-induced oxidative stress readily, sensitively and rapidly

Paper Details

Date Published: 14 February 2005
PDF: 7 pages
Proc. SPIE 5634, Advanced Sensor Systems and Applications II, (14 February 2005); doi: 10.1117/12.572940
Show Author Affiliations
Bo Gao, South China Normal Univ. (China)
Da Xing, South China Normal Univ. (China)
Debin Zhu, South China Normal Univ. (China)


Published in SPIE Proceedings Vol. 5634:
Advanced Sensor Systems and Applications II
Yun-Jiang Rao; Osuk Y. Kwon; Gang-Ding Peng, Editor(s)

© SPIE. Terms of Use
Back to Top