Share Email Print
cover

Proceedings Paper

Electrochemiluminescence-PCR detection of genetically modified organisms
Author(s): Jinfeng Liu; Da Xing; Xingyan Shen; Debin Zhu
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The detection methods for genetically modified (GM) components in foods have been developed recently. But many of them are complicated and time-consuming; some of them need to use the carcinogenic substance, and can’t avoid false-positive results. In this study, an electrochemiluminescence polymerase chain reaction (ECL-PCR) method for detection GM tobaccos is proposed. The Cauliflower mosaic virus 35S (CaMV35S) promoter was amplified by PCR, Then hybridized with a Ru(bpy)32+ (TBR)-labeled and a biotinylated probe. The hybridization products were captured onto streptavidin-coated paramagnetic beads, and detected by measuring the electrochemiluminescence (ECL) signal of the TBR label. Whether the tobaccos contain GM components was discriminated by detecting the ECL signal of CaMV35S promoter. The experiment results show that the detection limit for CaMV35S promoter is 100 fmol, and the GM components can be clearly identified in GM tobaccos. The ECL-PCR method provide a new means in GMOs detection due to its safety, simplicity and high efficiency.

Paper Details

Date Published: 18 January 2005
PDF: 8 pages
Proc. SPIE 5630, Optics in Health Care and Biomedical Optics: Diagnostics and Treatment II, (18 January 2005); doi: 10.1117/12.572808
Show Author Affiliations
Jinfeng Liu, South China Normal Univ. (China)
Da Xing, South China Normal Univ. (China)
Xingyan Shen, South China Normal Univ. (China)
Debin Zhu, South China Normal Univ. (China)


Published in SPIE Proceedings Vol. 5630:
Optics in Health Care and Biomedical Optics: Diagnostics and Treatment II
Britton Chance; Mingzhe Chen; Arthur E. T. Chiou; Qingming Luo, Editor(s)

© SPIE. Terms of Use
Back to Top