Share Email Print
cover

Proceedings Paper

Polarization aberration in resource satellite system
Author(s): Ying Zhang; Lin Li; Yifan Huang; Guangjun Gao; Yinhua Cao
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Polarization aberration is one of the most important factors affecting the performance of optical systems, especially in systems which have many reflectors. The polarization response characters of the reflectors will change the polarization state of the incident light and the polarization aberration will affect the imaging quality of the system. In many resource satellites R-C reflective systems are often used in primary optical systems. The main elements of the R-C reflective systems are reflectors coated with thin films, so polarization aberration must be controlled to improve the imaging quality of the systems. In this paper ZEMAX software is used to realize the simulation of the optical system of a resource satellite and polarization analysis of the system is presented. According to the results of the polarization analysis, the whole optical system is optimized and the ways to control the polarization aberration are summarized. As a result of the study, a conclusion can be drawn that polarization is an important aspect in optical design. To achieve good imaging quality, polarization aberration must be controlled very well, moreover, optical thin film design should be considered while designing optical systems.

Paper Details

Date Published: 10 February 2005
PDF: 8 pages
Proc. SPIE 5638, Optical Design and Testing II, (10 February 2005); doi: 10.1117/12.572519
Show Author Affiliations
Ying Zhang, Beijing Institute of Technology (China)
Lin Li, Beijing Institute of Technology (China)
Yifan Huang, Beijing Institute of Technology (China)
Guangjun Gao, Beijing Institute of Technology (China)
Yinhua Cao, Beijing Institute of Technology (China)


Published in SPIE Proceedings Vol. 5638:
Optical Design and Testing II
Yongtian Wang; Zhicheng Weng; Shenghua Ye; Jose M. Sasian, Editor(s)

© SPIE. Terms of Use
Back to Top