Share Email Print
cover

Proceedings Paper

Solving correspondence problems with 1D signal matching
Author(s): Pengcheng Zhan; Dah-Jye Lee; Randal Beard
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Signal matching can be applied to many applications, such as shape matching, stereo vision, image registration, and so on. With the development of hardware, 1D signal matching can be implemented with hardware to make fast processing more feasible. This is especially important for many real-time 3D vision applications such as unmanned air vehicles and mobile robots. When lighting variance is not significant in a controlled lighting environment or when the baseline is short, images taken from two viewpoints are quite similar. It is also true for each scan line pair if the attention is drawn to 1D signal. By processing 1D signal line by line, a dense disparity map can be achieved and 3D scene can be reconstructed. In this paper, we present a robust 1D signal matching method, which combines spline representation and genetic algorithm to obtain a dense disparity map. By imposing smoothness constraint implicitly, matching parameters can be solved in terms of their spline representations by minimizing a certain cost function. Genetic algorithm can then be used to perform the optimization task. Reconstruction results of three different scene settings are shown to prove the validity of our algorithm. Due to the similarity of the problem in nature, this algorithm can be easily extended to solve image registration and motion detection problems.

Paper Details

Date Published: 25 October 2004
PDF: 11 pages
Proc. SPIE 5608, Intelligent Robots and Computer Vision XXII: Algorithms, Techniques, and Active Vision, (25 October 2004); doi: 10.1117/12.572475
Show Author Affiliations
Pengcheng Zhan, Brigham Young Univ. (United States)
Dah-Jye Lee, Brigham Young Univ. (United States)
Randal Beard, Brigham Young Univ. (United States)


Published in SPIE Proceedings Vol. 5608:
Intelligent Robots and Computer Vision XXII: Algorithms, Techniques, and Active Vision
David P. Casasent; Ernest L. Hall; Juha Roning, Editor(s)

© SPIE. Terms of Use
Back to Top