Share Email Print

Proceedings Paper

Three-dimensional photoacoustic imaging of breast tissue phantoms
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A laboratory prototype of a time-resolved photoacoustic mammograph, based on a parallel plate geometry is presented. Light is delivered from a Q-switched Nd:YAG laser using fiber-optic bundles which can be mechanically scanned across the surface of a phantom. The ultrasound signals produced by the photoacoustic effect are measured in a transmission mode, using a large-area ultrasound detector matrix. Signals from the matrix are acquired using fast digitizers. Various performance studies of the system are presented. A breast phantom of dimensions (150x120x60)mm was created based on poly(vinyl alcohol) (PVA) gel, which can be imparted with the average optical scattering properties of breast tissue by a simple process of freezing and thawing of an aqueous poly(vinyl alcohol) solution. The acoustic properties are also found to match those of breast tissue. Such a photoacoustic breast phantom was embedded with several tumour-simulating inhomogeneities. These inserts were also based on poly(vinyl alcohol) gels, appropriately dyed at the time of formation, to possess various optical absorption coefficients, between 2 and 7 times that of the background. Using the signals collected from regions-of-interest (ROI) in the volume of the phantom, three-dimensional images were obtained using a modified delay-and-sum beamforming algorithm. The results indicate that photoacoustics, as embodied in this instrument, has a potential for detecting tumours in the breast.

Paper Details

Date Published: 29 July 2004
PDF: 5 pages
Proc. SPIE 5486, ALT'03 International Conference on Advanced Laser Technologies: Biomedical Optics, (29 July 2004); doi: 10.1117/12.572028
Show Author Affiliations
Srirang Manohar, Univ. of Twente (Netherlands)
Alexei Kharine, Univ. of Twente (Netherlands)
Wiendelt Steenbergen, Univ. of Twente (Netherlands)
Ton G.J.M. van Leeuwen, Univ. of Twente (Netherlands)
Univ. of Amsterdam Academic Medical Ctr. (Netherlands)

Published in SPIE Proceedings Vol. 5486:
ALT'03 International Conference on Advanced Laser Technologies: Biomedical Optics
Ruikang K. Wang; Jeremy C. Hebden; Alexander V. Priezzhev; Valery V. Tuchin, Editor(s)

© SPIE. Terms of Use
Back to Top