Share Email Print
cover

Proceedings Paper

Vertical-scanning profilometry having nanometric height resolution and scanning speed more than 40 μms/s
Author(s): Masaaki Adachi
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

I propose a high-speed vertical scanning profilometry which has nanometric height resolution. The proposed profilometry is equipped with two short-coherent-light sources, which are made of extremely-high-power light emitting diodes ( LED) and whose center wavelengths are 503 and 591 nm. In 3-D profile measurements, this profilometry acquires many interferograms while vertically-scanning a Mirau-type microscope objective with 0.415-mm step/interferogram and alternately-flashing LED. Odd-numbered interferograms are acquired with 503-nm LED and even-numbered interferograms are with 591-nm LED. Regarding the acquired interferograms, a computer calculates phase and modulation contrast using a phase-shifting technique. As two step movements are repeated between acquirements of interferograms flashed with the same LED, phase step corresponds to approximately 6 p + p/2 with 503 nm and approximately 6 p - p/2 with 591 nm, respectively. After searching the interferogram having a contrast peak, the computer extracts optical path difference of the searched interferogram with nanometric resolution from the phase information. From the vertical step length of 0.415 mm and a frame rate of 110 Hz, a vertical scanning speed is given as 46 mm/s. Height resolution of the profilometry is confirmed from measured data of a step height standard.

Paper Details

Date Published: 25 October 2004
PDF: 10 pages
Proc. SPIE 5602, Optomechatronic Sensors, Actuators, and Control, (25 October 2004); doi: 10.1117/12.570550
Show Author Affiliations
Masaaki Adachi, Kanazawa Univ. (Japan)


Published in SPIE Proceedings Vol. 5602:
Optomechatronic Sensors, Actuators, and Control
Kee S. Moon, Editor(s)

© SPIE. Terms of Use
Back to Top