Share Email Print
cover

Proceedings Paper

Nanostructure-engineered chemical sensors for hazardous gas and vapor detection
Author(s): Jing Li; Yijiang Lu
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

A nanosensor technology has been developed using nanostructures, such as single walled carbon nanotubes (SWNTs) and metal oxides nanowires or nanobelts, on a pair of interdigitated electrodes (IDE) processed with a siliconbased microfabrication and micromachining technique. The IDE fingers were fabricated using thin film metallization techniques. Both in-situ growth of nanostructure materials and casting of the nanostructure dispersions were used to make chemical sensing devices. These sensors have been exposed to hazardous gases and vapors, such as acetone, benzene, chlorine, and ammonia in the concentration range of ppm to ppb at room temperature. The electronic molecular sensing in our sensor platform can be understood by electron modulation between the nanostructure engineered device and gas molecules. As a result of the electron modulation, the conductance of nanodevice will change. Due to the large surface area, low surface energy barrier and high thermal and mechanical stability, nanostructured chemical sensors potentially can offer higher sensitivity, lower power consumption and better robustness than the state-of-the-art systems, which make them more attractive for defense and space applications. Combined with MEMS technology, light weight and compact size sensors can be made in wafer scale with low cost.

Paper Details

Date Published: 29 December 2004
PDF: 10 pages
Proc. SPIE 5593, Nanosensing: Materials and Devices, (29 December 2004); doi: 10.1117/12.570528
Show Author Affiliations
Jing Li, NASA Ames Research Ctr. (United States)
Yijiang Lu, NASA Ames Research Ctr. (United States)


Published in SPIE Proceedings Vol. 5593:
Nanosensing: Materials and Devices
M. Saif Islam; Achyut K. Dutta, Editor(s)

© SPIE. Terms of Use
Back to Top