Share Email Print
cover

Proceedings Paper

QD lasers: physics and applications
Author(s): Nikolai N. Ledentsov; Alexey R. Kovsh; Vitaly A. Shchukin; Sergey S. Mikhrin; Igor L. Krestnikov; A. V. Kozhukhov; Leonid Ya. Karachinsky; Mikhail V. Maximov; Innokenty I. Novikov; Yuri M. Shernyakov; Ilja P. Soshnikov; Alexey E. Zhukov; Efim L. Portnoi; Victor M. Ustinov; D. Gerthsen; Pallab K. Bhattacharya; N. F. Zakharov; P. Werner; Friedhelm Hopfer; Matthias Kuntz; Dieter Bimberg
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Quantum dot (QDs) heterostructures structurally represent tiny 3D insertions of a narrow bandgap material, coherently embedded in a wide-bandgap single-crystalline matrix. The QDs are produced by conventional epitaxial techniques applying self-organized growth and behave electronically as artificial atoms. Strain-induced attraction of QDs in different rows enables vertically-coupled structures for polarization, lifetime and wavelength control. Overgrowth with ternary or quaternary alloy materials allows controllable increase in the QD volume via the island-activated alloy phase separation. Repulsive forces during overgrowth of QDs by a matrix material enable selective capping of coherent QDs, keeping the defect regions uncapped for their subsequent selective evaporation. Low-threshold injection lasing is achieved up to 1350 nm wavelength at 300K using InAs-GaAs QDs. 8 mW VCSELs at 1.3 μm with doped DBRs are realized. Edge-emitters demonstrate 10 GHz bandwidth up to 70°C without current adjustment. VCSELs show ~4 GHz relaxation oscillation frequency. QD lasers demonstrate above 3000 h of CW operation at 1.5 W at 45°C heat sink temperature without degradation. The defect reduction technique (DRT) applied to thick layers enables realization of defect-free structures on top of dislocated templates. Using of DRT metamorphic buffer layers allowed 7W GaAs-based QD lasers at 1500 nm.

Paper Details

Date Published: 31 January 2005
PDF: 10 pages
Proc. SPIE 5624, Semiconductor and Organic Optoelectronic Materials and Devices, (31 January 2005); doi: 10.1117/12.570284
Show Author Affiliations
Nikolai N. Ledentsov, Nanosemiconductor GmbH (Germany)
Alexey R. Kovsh, Nanosemiconductor GmbH (Germany)
Vitaly A. Shchukin, Nanosemiconductor GmbH (Germany)
Sergey S. Mikhrin, Nanosemiconductor GmbH (Germany)
Igor L. Krestnikov, Nanosemiconductor GmbH (Germany)
A. V. Kozhukhov, Nanosemiconductor GmbH (Germany)
Leonid Ya. Karachinsky, A.F. Ioffe Physico-Technical Institute (Russia)
Mikhail V. Maximov, A.F. Ioffe Physico-Technical Institute (Russia)
Innokenty I. Novikov, A.F. Ioffe Physico-Technical Institute (Russia)
Yuri M. Shernyakov, A.F. Ioffe Physico-Technical Institute (Russia)
Ilja P. Soshnikov, A.F. Ioffe Physico-Technical Institute (Russia)
Alexey E. Zhukov, A.F. Ioffe Physico-Technical Institute (Russia)
Efim L. Portnoi, A.F. Ioffe Physico-Technical Institute (Russia)
Victor M. Ustinov, A.F. Ioffe Physico-Technical Institute (Russia)
D. Gerthsen, Univ. Karlsruhe (Germany)
Pallab K. Bhattacharya, Univ. of Michigan (United States)
N. F. Zakharov, Max-Planck-Institut fuer Mikrostrukturphysik (Germany)
P. Werner, Max-Planck-Institut fuer Mikrostrukturphysik (Germany)
Friedhelm Hopfer, Technische Univ. Berlin (Germany)
Matthias Kuntz, Technische Univ. Berlin (Germany)
Dieter Bimberg, Technische Univ. Berlin (Germany)


Published in SPIE Proceedings Vol. 5624:
Semiconductor and Organic Optoelectronic Materials and Devices
Chung-En Zah; Yi Luo; Shinji Tsuji, Editor(s)

© SPIE. Terms of Use
Back to Top