Share Email Print

Proceedings Paper

Optimizing parameters for magnetorheological finishing supersmooth surface
Author(s): Haobo Cheng; Zhijing Feng; Yingwei Wang
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper presents a reasonable approach to this issue, i.e., computer controlled magnetorheological finishing (MRF). In MRF, magnetically stiffened magnetorheological (MR) abrasive fluid flows through a preset converging gap that is formed by a workpiece surface and a moving rigid wall, to create precise material removal and polishing. Tsinghua University recently completed a project with MRF technology, in which a 66 mm diameter, f/5 parabolic mirror was polished to the shape accuracy of λ/17 RMS (λ=632.8nm) and the surface roughness of 1.22 nm Ra. This was done on a home made novel aspheric computer controlled manufacturing system. It is a three-axis, self-rotating wheel machine, the polishing tool is driven with one motor through a belt. This paper presents the manufacturing and testing processes, including establish the mathematics model of MRF optics on the basis of Preston equation, profiler test and relative coefficients, i.e., pressure between workpiece and tool, velocity of MR fluid in polishing spot, tolerance control of geometrical parameters such as radius of curvature and conic constant also been analyzed in the paper. Experiments were carried out on the features of MRF. The results indicated that the required convergent speed, surface roughness could be achieved with high efficiency.

Paper Details

Date Published: 10 February 2005
PDF: 8 pages
Proc. SPIE 5638, Optical Design and Testing II, (10 February 2005); doi: 10.1117/12.568383
Show Author Affiliations
Haobo Cheng, Tsinghua Univ. (China)
Zhijing Feng, Tsinghua Univ. (China)
Yingwei Wang, Changchun Institute of Science and Technology (China)

Published in SPIE Proceedings Vol. 5638:
Optical Design and Testing II
Yongtian Wang; Zhicheng Weng; Shenghua Ye; Jose M. Sasian, Editor(s)

© SPIE. Terms of Use
Back to Top