Share Email Print
cover

Proceedings Paper

Memory cell with photoacoustic switching
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The manufacturing of nanoscale devices with sizes smaller than 100 nm is founded on the quantum physical phenomena. We proposed the new nanoscale device with photoacoustic switching. The memory cell can be made by means of two thin silicon surface layers one of which contains oxygen in Si-O-Si bonding. The charge storage is caused by inserting on clean silicon layer the oxygen incorporated with silicon. The mechanical deformation of upper oxidized silicon layer results in shift of atomic positions. The oxygen appearance on the silicon surface is reflected on electronic structure as new defect level inside band gap. The electrons are stored on this oxygen related level with energy position Ec-0.18 eV. By applied bias voltage we realize the erase procedure by removing the stored electron. The silicon surface should be prepared because the oxygen incorporation depends on the chemical properties. The electronic structure of oxidized silicon surfaces with (111) and (100) orientation was tested by using second harmonic generation response. The characteristic time of storage, 1 ns, was measured by using the laser time-resolved short pulse spectroscopy. We used modelocked mode of laser system with pulse duration 120 ps. The speed of switching was approximately 1013 Hz.

Paper Details

Date Published: 19 January 2005
PDF: 10 pages
Proc. SPIE 5592, Nanofabrication: Technologies, Devices, and Applications, (19 January 2005); doi: 10.1117/12.568290
Show Author Affiliations
Dmitry E. Milovzorov, Institute of Physics and Technology (Russia)


Published in SPIE Proceedings Vol. 5592:
Nanofabrication: Technologies, Devices, and Applications
Warren Y-C. Lai; Stanley Pau; O. Daniel Lopez, Editor(s)

© SPIE. Terms of Use
Back to Top