Share Email Print
cover

Proceedings Paper

Noisy optical detection of chaos-based watermarks
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

In this paper we investigate the limits on optical detection of noisy watermarks that use a chaotic function, the logistic difference equation, in the watermark generation scheme. By varying the function seed, different chaotic sequences exhibiting lowpass and highpass characteristics, can be obtained for the same function, offering an added security advantage over watermarks generated using pseudorandom sequences. Watermark Detection is the process of determining whether an image is watermarked with a certain watermark. In this paper, we model and investigate an optical correlator suitable for watermark detection for certain classes of high-pass or low-pass watermarks. Once in the public domain a watermarked image may be subjected to noise and other attacks, deliberate and unintentional. Additionally,an optical correlator system will also be subject to shot noise. The effects of shot noise on optically transmitted watermarks are modeled in this paper and we examine how the watermark detection scheme performs in such situations. We quantify the degree of noise that may be present in the watermark detection scheme in order to obtain reliable detection or rejection of a watermark using an optical-correlator.

Paper Details

Date Published: 16 November 2004
PDF: 10 pages
Proc. SPIE 5579, Photonics North 2004: Photonic Applications in Telecommunications, Sensors, Software, and Lasers, (16 November 2004); doi: 10.1117/12.567429
Show Author Affiliations
Aidan Mooney, National Univ. of Ireland/Maynooth (Ireland)
John G. Keating, National Univ. of Ireland/Maynooth (Ireland)


Published in SPIE Proceedings Vol. 5579:
Photonics North 2004: Photonic Applications in Telecommunications, Sensors, Software, and Lasers
Donna Strickland; Trevor J. Hall; Stoyan Tanev; Xiaoyi Bao; Franko Kueppers; David V. Plant, Editor(s)

© SPIE. Terms of Use
Back to Top