Share Email Print
cover

Proceedings Paper

Manipulation of optical properties of human skin by light scattering nanoparticles of titanium dioxide
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

An acute problem to protect human skin against harmful UV solar rays emerged in recent years because of increased occasions of skin cancer. The aim of this research is to evaluate, how optical properties of the horny layer of human skin can be changed by imbedding the titanium dioxide (TiO2) fine particles in order to achieve the maximal attenuation of the UV solar radiation. In-depth distribution in the skin of TiO2 particles typically achieved with the sunscreens is determined experimentally by the tape-stripping technique. Computer code implementing the Monte Carlo method is used to simulate photon migration within 20-mm thick horny layer partially filled with nano-sized TiO2 spheres. Dependencies of absorbed by and reflected from, as well as transmitted through the horny layer UV radiation of two wavelengths (310 and 400 nm) on the concentration of TiO2 particles are obtained and analyzed.

Paper Details

Date Published: 9 December 2004
PDF: 9 pages
Proc. SPIE 5578, Photonics North 2004: Photonic Applications in Astronomy, Biomedicine, Imaging, Materials Processing, and Education, (9 December 2004); doi: 10.1117/12.567423
Show Author Affiliations
Alexey P. Popov, M.V. Lomonosov Moscow State Univ. (Russia)
Univ. of Oulu (Finland)
Alexander V. Priezzhev, M.V. Lomonosov Moscow State Univ. (Russia)
Jurgen Lademann, Humboldt Univ. zu Berlin (Germany)
Risto Myllyla, Univ. of Oulu (Finland)


Published in SPIE Proceedings Vol. 5578:
Photonics North 2004: Photonic Applications in Astronomy, Biomedicine, Imaging, Materials Processing, and Education
Marc Nantel; Glen Herriot; Graham H. McKinnon; Leonard MacEachern; Robert A. Weersink; Rejean Munger; Andrew Ridsdale, Editor(s)

© SPIE. Terms of Use
Back to Top