Share Email Print
cover

Proceedings Paper

Can we afford to replace chrome?
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Chrome-based absorbers have been the mainstay of the photomask industry for three decades. While chrome is attractive because of its durability and opacity, it conversely poses challenges for etch and repair. Due to large capital investments, any new absorber must be designed to work with existing scanners, mask writers, and mask inspection tools. Furthermore changing absorber materials may not improve defect control in mask blank fabrication, which is a paramount concern in blank fabrication. Consequently, blank manufacturers are reluctant to change from chrome. In terms of return on investment (ROI), the only driver to switch technologies is achieving higher mask and wafer yields. This is a reasonable assumption as both etch and repair tool suppliers believe a non-chrome material like tantalum (Ta) compounds would significantly improve their capabilities with known technologies. A high level estimate shows that with even aggressive improvement assumptions, a 100% conversion from chrome does not save money. Based on the current International SEMATECH (ISMT) cost of ownership (COO) model and improved yields for critical dimension (CD) and defects, a case can be made for converting at and below 100 nm ground rules. An industry wide conversion from chrome to a non-chrome absorber is estimated to cost $100M. By contrast, blank suppliers are reportedly spending "multiple" millions of dollars to improve chrome per year. A widespread concern is whether binary optical masks have enough life left to provide sufficient ROI. Optical lithography will continue to be of use in the foreseeable future. Even as leading-edge production moves to new technology, the main manufacturing volumes will continue to create significant demand for masks for 100 nm to 45 nm for many years. With the industry currently pushing extreme ultraviolet lithography (EUVL), the best situation would be for EUVL and optical lithography to choose the same absorber material. This creates a winning situation for the industry independent of EUVL implementation timing. Today Ta-based films are a reasonable choice.

Paper Details

Date Published: 6 December 2004
PDF: 10 pages
Proc. SPIE 5567, 24th Annual BACUS Symposium on Photomask Technology, (6 December 2004); doi: 10.1117/12.565124
Show Author Affiliations
Gilbert V. Shelden, Shelden Consulting (United States)
Long He, International SEMATECH (United States)
Scott D. Hector, International SEMATECH (United States)
Walt Trybula, International SEMATECH (United States)


Published in SPIE Proceedings Vol. 5567:
24th Annual BACUS Symposium on Photomask Technology
Wolfgang Staud; J. Tracy Weed, Editor(s)

© SPIE. Terms of Use
Back to Top