Share Email Print
cover

Proceedings Paper

Wavefront phase recovery using graphic processing units (GPUs)
Author(s): Fernando L. Rosa; Jose Gil Marichal-Hernandez; Jose Manuel Rodriguez-Ramos
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

We have developed a Shack-Hartmann sensor simulation, moving the complex amplitude of the electromagnetic field using Fast Fourier Transforms. The Shack-Hartmann sensor takes as input the atmospheric wavefront frames generated by the Roddier algorithm, and provides, as output, the subpupil images. The centroids and the wavefront phase maps are computed combining GPU and CPU. The algorithms used on the GPU are written using nVidia language C for Graphics (Cg) and run on a CineFx graphical engine. Such a graphical engine provides a computational power several times greater than usual CPU-FPU combination, with a reduced cost. Any algorithm implemented on these engines must be previously adapted from their original form to fit the pipeline capabilities. To achieve an optimal performance, we compare the results with the same algorithm implemented on GPU and CPU. We present here, for the first time, preliminary results on wavefront phase recovery using GPU. We have chose a zonal algorithm that fits better on the stream paradigm of the GPU's. The result shows a 10x speedup in the GPU centroid algorithm implementation and a 2x speedup in the phase recovery one compared with the same on CPU.

Paper Details

Date Published: 11 November 2004
PDF: 11 pages
Proc. SPIE 5572, Optics in Atmospheric Propagation and Adaptive Systems VII, (11 November 2004); doi: 10.1117/12.564777
Show Author Affiliations
Fernando L. Rosa, Univ. de La Laguna (Spain)
Jose Gil Marichal-Hernandez, Univ. de La Laguna (Spain)
Jose Manuel Rodriguez-Ramos, Univ. de La Laguna (Spain)


Published in SPIE Proceedings Vol. 5572:
Optics in Atmospheric Propagation and Adaptive Systems VII
John D. Gonglewski; Karin Stein, Editor(s)

© SPIE. Terms of Use
Back to Top