Share Email Print

Proceedings Paper

Emerging low-cost LED thermal management materials
Author(s): Carl H. Zweben
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

As chip size and power levels continue to increase, thermal management, thermal stresses and cost have become key LED packaging issues. Until recently, low-coefficient-of-thermal-expansion (CTE) materials, which are needed to minimize thermal stresses, had thermal conductivities that are no better than those of aluminum alloys, about 200 W/m-K. Copper, which has a higher thermal conductivity (400 W/m-K), also has a high CTE, which can cause severe thermal stresses. We now have over a dozen low-CTE materials with thermal conductivities ranging between 400 and 1700 W/m-K, and almost a score with thermal conductivities at least 50% greater than that of aluminum. Some of these materials are low cost. Others have the potential to be low cost in high volume production. Emphasizing low cost, this paper reviews traditional packaging materials and the six categories of advanced materials: polymer matrix-, metal matrix-, ceramic matrix-, and carbon matrix composites; monolithic carbonaceous materials; and metal-metal composites/alloys. Topics include properties, status, applications, cost and likely future directions of new advanced materials, including carbon nanotubes and inexpensive graphite nanoplatelets.

Paper Details

Date Published: 20 October 2004
PDF: 13 pages
Proc. SPIE 5530, Fourth International Conference on Solid State Lighting, (20 October 2004); doi: 10.1117/12.563934
Show Author Affiliations
Carl H. Zweben, Advanced Packaging Materials Consultant (United States)

Published in SPIE Proceedings Vol. 5530:
Fourth International Conference on Solid State Lighting
Ian T. Ferguson; Nadarajah Narendran; Steven P. DenBaars; John C. Carrano, Editor(s)

© SPIE. Terms of Use
Back to Top