Share Email Print

Proceedings Paper

Excimer lamps: history, discharge physics, and industrial applications
Author(s): Ulrich Kogelschatz
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The development of modern excimer lamps (excilamps) is reviewed. These lamps provide high intensity ultraviolet (UV) of vacuum ultraviolet (VUV) radiation generated by decaying excimer complexes formed in various non-equilibrium discharges. Due to the absence of self-absorption in the plasma this process can be highly efficient and tolerates high power loadings. With different fill gases narrow-band radiation at various UV and VUV wavelengths can be obtained. Phosphor coatings can be used to obtain visible radiation. Cylindrical as well as flat planar configurations are used to provide high photon fluxes over large areas. The special characteristics of excimer lamps led to a number of novel applications for low-temperature materials processing (oxidation, deposition, annealing, etching, cleaning, micro-structuring) and to applications in photochemical purification of air and water using advanced oxidation processes (AOPs) based on O2 and H2O photolysis. Further applications are expected in analytical instrumentation.

Paper Details

Date Published: 3 May 2004
PDF: 15 pages
Proc. SPIE 5483, Atomic and Molecular Pulsed Lasers V, (3 May 2004); doi: 10.1117/12.563006
Show Author Affiliations
Ulrich Kogelschatz, ABB Corporate Research (Switzerland)

Published in SPIE Proceedings Vol. 5483:
Atomic and Molecular Pulsed Lasers V
Victor F. Tarasenko, Editor(s)

© SPIE. Terms of Use
Back to Top