Share Email Print
cover

Proceedings Paper

Technical implementation of the DESTINY mission concept
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The Dark Energy Space Telescope (DESTINY) is a proposed approach to the Joint Dark Energy Mission (JDEM). This paper describes its current design and trades of an on-going mission concept study. The DESTINY ~1.8-meter near-infrared (NIR) grism-mode space telescope would gather a census of type Ia and type II supernovae (SN) over the redshift range 0.5<Z<1.7 for characterizing the nature of dark energy. The central concept is a wide-field, all-grism NIR survey camera. Grism spectra with 2-pixel resolving power λ/Δλ≈ 100 will provide broadband spectrophotometry, redshifts, SN classification, as well as valuable time-resolved diagnostic data for understanding the SN explosion physics. DESTINY provides simultaneous spectroscopy on each object within the wide field-of-view sampled by a large focal plane array. The design combines the wide FOV coverage of a flat field, all-reflective three mirror anastigmat with spectroscopy using an optimized nonobjective "objective" grism located in the real exit pupil of the TMA. The spectra from objects within the resulting 0.25 square-degree FOV are sampled with 100 mas pixels by an 8k x 32k HgCdTe FPA. This methodology requires only a single mode of operation, a single detector technology, and a single instrument.

Paper Details

Date Published: 12 October 2004
PDF: 8 pages
Proc. SPIE 5487, Optical, Infrared, and Millimeter Space Telescopes, (12 October 2004); doi: 10.1117/12.562389
Show Author Affiliations
Robert A. Woodruff, Lockheed Martin Corp. (United States)
Jon A. Morse, Arizona State Univ. (United States)
Tod R. Lauer, National Optical Astronomy Observatory (United States)


Published in SPIE Proceedings Vol. 5487:
Optical, Infrared, and Millimeter Space Telescopes
John C. Mather, Editor(s)

© SPIE. Terms of Use
Back to Top