Share Email Print
cover

Proceedings Paper

Satellite Upper Air Network (SUAN)
Author(s): Tony L. Reale; Peter Thorne
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

During the past 20 years of NOAA operational polar satellites, it has become evident that a growing problem concerning their utilization in Climate and also Numerical Weather Prediction (NWP) applications are the systematic errors and uncertainties inherent in the satellite measurements. Similar arguments can be made for global radiosonde observations. These uncertainties are often larger than the sensitive signals and processes, that satellite and radiosonde measurements are designed to reveal, particularly in the realm of climate. Possible strategies to quantify and compensate for these problems include the analysis of satellite overlap data and/or available collocations of satellite and ground truth (radiosonde) observations. However, overlap observations are typically not available except in extreme polar regions and current sampling strategies for compiling collocated radiosonde and satellite observations are insufficient, further compounding the inherent uncertainties in the ground-truth radiosonde data. A Satellite Upper Air Network is proposed to provide reference radiosonde launches coincident with operational polar satellite(s) overpass. The SUAN consist of 36 global radiosonde stations sub-sampled from the Global Upper Air Network (GUAN), and is designed to provide a robust, global sample of collocated radiosonde and satellite observations conducive to the monitoring and validation of satellite and radiosonde observations. The routine operation of such a network in conjunction with operational polar satellites would provide a long-term of performance for critical observations of particular importance for climate. The following report presents a candidate network of 36 upper-air sites that could comprise a SUAN. Their selection along with the mutual benefit across the satellite, radiosonde, climate, numerical weather prediction (NWP) and radiative transfer (RT) model areas are discussed.

Paper Details

Date Published: 14 October 2004
PDF: 13 pages
Proc. SPIE 5548, Atmospheric and Environmental Remote Sensing Data Processing and Utilization: an End-to-End System Perspective, (14 October 2004); doi: 10.1117/12.560986
Show Author Affiliations
Tony L. Reale, National Oceanic and Atmospheric Administration/NESDIS (United States)
Peter Thorne, Hadley Centre, Met Office (United Kingdom)


Published in SPIE Proceedings Vol. 5548:
Atmospheric and Environmental Remote Sensing Data Processing and Utilization: an End-to-End System Perspective
Hung-Lung Allen Huang; Hal J. Bloom, Editor(s)

© SPIE. Terms of Use
Back to Top