Share Email Print

Proceedings Paper

PCI bus content-addressable-memory (CAM) implementation on FPGA for pattern recognition/image retrieval in a distributed environment
Author(s): Dalila B. Megherbi; Yin Yan; Parikh Tanmay; Jed Khoury; C. L. Woods
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Recently surveillance and Automatic Target Recognition (ATR) applications are increasing as the cost of computing power needed to process the massive amount of information continues to fall. This computing power has been made possible partly by the latest advances in FPGAs and SOPCs. In particular, to design and implement state-of-the-Art electro-optical imaging systems to provide advanced surveillance capabilities, there is a need to integrate several technologies (e.g. telescope, precise optics, cameras, image/compute vision algorithms, which can be geographically distributed or sharing distributed resources) into a programmable system and DSP systems. Additionally, pattern recognition techniques and fast information retrieval, are often important components of intelligent systems. The aim of this work is using embedded FPGA as a fast, configurable and synthesizable search engine in fast image pattern recognition/retrieval in a distributed hardware/software co-design environment. In particular, we propose and show a low cost Content Addressable Memory (CAM)-based distributed embedded FPGA hardware architecture solution with real time recognition capabilities and computing for pattern look-up, pattern recognition, and image retrieval. We show how the distributed CAM-based architecture offers a performance advantage of an order-of-magnitude over RAM-based architecture (Random Access Memory) search for implementing high speed pattern recognition for image retrieval. The methods of designing, implementing, and analyzing the proposed CAM based embedded architecture are described here. Other SOPC solutions/design issues are covered. Finally, experimental results, hardware verification, and performance evaluations using both the Xilinx Virtex-II and the Altera Apex20k are provided to show the potential and power of the proposed method for low cost reconfigurable fast image pattern recognition/retrieval at the hardware/software co-design level.

Paper Details

Date Published: 2 November 2004
PDF: 12 pages
Proc. SPIE 5558, Applications of Digital Image Processing XXVII, (2 November 2004); doi: 10.1117/12.560894
Show Author Affiliations
Dalila B. Megherbi, Univ. of Massachusetts/Lowell (United States)
Yin Yan, Univ. of Massachusetts/Lowell (United States)
Parikh Tanmay, Univ. of Massachusetts/Lowell (United States)
Jed Khoury, Air Force Research Lab. (United States)
C. L. Woods, Air Force Research Lab. (United States)

Published in SPIE Proceedings Vol. 5558:
Applications of Digital Image Processing XXVII
Andrew G. Tescher, Editor(s)

© SPIE. Terms of Use
Back to Top