Share Email Print

Proceedings Paper

Nondestructive evaluations of thermal deformations for laser microwelding process
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Laser microwelding process produces large temperature gradients during the complicated phase transformations of workpiece materials, which results in a high stress level and undesired thermomechanical deformations. Characterization of these deformations becomes important as they might significantly affect performance, functionality, and reliability of the microwelded components. We have developed an optoelectronic holography (OEH) methodology for nondestructive evaluation of thermomechanical deformations caused by laser microwelding processes. OEH methodology provides a unique experimental approach for quantitative measurements of displacements and deformations with sub-micrometer accuracy in full field of view. In this paper, the OEH methodology is described including illumination of a workpiece, formation and acquisition of images, and processing of these images to determine parameters characterizing laser microwelds. Representative results of the OEH measurements of the deformations caused by laser microwelding of metal sheets are presented as a function of different laser welding parameters. In addition, analytical and computational models are also developed to simulate temperature, thermal stress, and thermal deformation fields in laser microwelding process. The investigations indicate that the OEH methodology is a viable tool for characterization of thermomechanical deformations caused by laser microwelding processes, and can help optimizing laser microwelding processes for high precision material-joining applications.

Paper Details

Date Published: 2 August 2004
PDF: 10 pages
Proc. SPIE 5532, Interferometry XII: Applications, (2 August 2004); doi: 10.1117/12.560273
Show Author Affiliations
Wei Han, Worcester Polytechnic Institute (United States)
Ryszard J. Pryputniewicz, Worcester Polytechnic Institute (United States)

Published in SPIE Proceedings Vol. 5532:
Interferometry XII: Applications
Wolfgang Osten; Erik Novak, Editor(s)

© SPIE. Terms of Use
Back to Top