Share Email Print
cover

Proceedings Paper

Optical trapping for complex fluid microfluidics
Author(s): Tor Vestad; John Oakey; David W. M. Marr
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Many proposed applications of microfluidics involve the manipulation of complex fluid mixtures such as blood or bacterial suspensions. To sort and handle the constituent particles within these suspensions, we have developed a miniaturized automated cell sorter using optical traps. This microfluidic cell sorter offers the potential to perform chip-top microbiology more rapidly and with less associated hardware and preparation time than other techniques currently available. To realize the potential of this technology in practical clinical and consumer lab-on-a-chip devices however, microscale control of not only particulates but also the fluid phase must be achieved. To address this, we have developed a mechanical fluid control scheme that integrates well with our optical separations approach. We demonstrate here a combined technique, one that employs both mechanical actuation and optical trapping for the precise control of complex suspensions. This approach enables both cell and particle separations as well as the subsequent fluid control required for the completion of complex analyses.

Paper Details

Date Published: 18 October 2004
PDF: 8 pages
Proc. SPIE 5514, Optical Trapping and Optical Micromanipulation, (18 October 2004); doi: 10.1117/12.560152
Show Author Affiliations
Tor Vestad, Colorado School of Mines (United States)
John Oakey, Colorado School of Mines (United States)
David W. M. Marr, Colorado School of Mines (United States)


Published in SPIE Proceedings Vol. 5514:
Optical Trapping and Optical Micromanipulation
Kishan Dholakia; Gabriel C. Spalding, Editor(s)

© SPIE. Terms of Use
Back to Top