Share Email Print

Proceedings Paper

Progress of multicolor single detector to detector array development for remote sensing
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Knowledge of the spatial and temporal distribution of atmospheric species such as CO2, O3, H2O, and CH4 is important for understanding the chemistry and physical cycles involving Earth's atmosphere. Although several remote sensing techniques are suitable for such measurements they are considered high cost techniques involving complicated instrumentation. Therefore, simultaneous measurement of atmospheric species using a single remote sensing instrument is significant for minimizing cost, size and complexity. While maintaining the instrument sensitivity and range, quality of multicolor detector, in terms of high quantum efficiency and low noise are vital for these missions. As the first step for developing multicolor focal plan array, the structure of a single element multicolor detector is presented in this paper. The detector consists of three p-n junction layers of Si, GaSb and InAs wafer bonded to cover the spectral range UV to 900 nm, 800 nm to 1.7 micron, and 1.5 micron to 3.4 micron, respectively. Modeling of the absorption coefficient for each material was carried out for optimizing the layers thicknesses for maximum absorption. The resulted quantum efficiency of each layer has been determined except InAs layer. The optical and electrical characterization of each layer structure is reported including dark current and spectral response measurements of Si pin structure and of GaSb and InAs p-n junctions. The effect of the material processing is discussed.

Paper Details

Date Published: 4 November 2004
PDF: 9 pages
Proc. SPIE 5543, Infrared Spaceborne Remote Sensing XII, (4 November 2004); doi: 10.1117/12.559917
Show Author Affiliations
M. Nurul Abedin, NASA Langley Research Ctr. (United States)
Tamer F. Refaat, Science and Technology Corp. (United States)
Ishwara B. Bhat, Rensselaer Polytechnic Institute (United States)
Yegao Xiao, Rensselaer Polytechnic Institute (United States)
Sumith V. Bandara, Jet Propulsion Lab. (United States)
Sarath D. Gunapala, Jet Propulsion Lab. (United States)

Published in SPIE Proceedings Vol. 5543:
Infrared Spaceborne Remote Sensing XII
Marija Strojnik, Editor(s)

© SPIE. Terms of Use
Back to Top