Share Email Print
cover

Proceedings Paper

Cavity-enhanced near-field optical magnetometry
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

We present the first near-field scanning optical magneto-optic Kerr effect (MOKE) of sub-micron magnetic structures, where a Kerr rotation of 0.11° from a 0.25μm nickel magnet was observed. This is enabled by a cavity based technique to enhance the Kerr rotation of light reflected from a magnetized surface. Spatially resolved magneto-optic measurements are performed involving both conventional microscopy and near-field scanning optical microscopy (NSOM). Cavity enhancement is achieved with either a single dielectric coating or a dielectric-metal bilayer coating applied to the ferromagnetic structure of interest. We present a scattering matrix approach to calculating the enhancement resulting from a multilayer dielectric coating and show good agreement with experiment. This demonstrates a non-invasive optical technique for magnetometry with ultrahigh spatial resolution.

Paper Details

Date Published: 8 October 2004
PDF: 10 pages
Proc. SPIE 5515, Nanoengineering: Fabrication, Properties, Optics, and Devices, (8 October 2004); doi: 10.1117/12.559681
Show Author Affiliations
Naser Qureshi, Univ. of California/Santa Cruz (United States)
Aaron R. Hawkins, Brigham Young Univ. (United States)
Holger Schmidt, Univ. of California/Santa Cruz (United States)


Published in SPIE Proceedings Vol. 5515:
Nanoengineering: Fabrication, Properties, Optics, and Devices
Elizabeth A. Dobisz; Louay A. Eldada, Editor(s)

© SPIE. Terms of Use
Back to Top