Share Email Print

Proceedings Paper

Dispersion management of holographic grating filter for WDM applications
Author(s): Seunghoon Han; Taesu Kim; Seunghwan Chung; Byoungho Lee
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We propose a model of a holographic grating (HG) filter for WDM applications and provide a method to control the chromatic dispersion of WDM demultiplexer as one of its specific applications. The general filter characteristics can be described as a correlation between the scattered mode from the HG and the out-coupling optic mode. We note that the HG phase distribution and lens aberration of out-coupling optics provide effective phase modulation for the chromatic dispersion of the filtered output. Also the amplitude distributions of the two modes perform a kind of weighting function (i.e., apodization), which controls the overall filter spectrum. This filter scheme can exploit wavelength dependent diffraction angle transition (i.e., spatial dispersion) and can be used for multi-channel demultiplexer in WDM system. In this case, lens aberrations of the out-coupling optics cause chromatic dispersion problems in each separated channel and among the channels. The problems can be managed by controlling the HG phase distribution so that the overall chromatic dispersion of the demultiplexer can be reduced and managed over the demultiplexed channels. We characterize the chromatic dispersion properties according to the third order lens aberrations and propose methods to control them by using HG phase distribution.

Paper Details

Date Published: 22 October 2004
PDF: 8 pages
Proc. SPIE 5560, Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications X, (22 October 2004); doi: 10.1117/12.559302
Show Author Affiliations
Seunghoon Han, Seoul National Univ. (South Korea)
Taesu Kim, Seoul National Univ. (South Korea)
Seunghwan Chung, Seoul National Univ. (South Korea)
Byoungho Lee, Seoul National Univ. (South Korea)

Published in SPIE Proceedings Vol. 5560:
Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications X
Francis T. S. Yu; Ruyan Guo; Shizhuo Yin, Editor(s)

© SPIE. Terms of Use
Back to Top