Share Email Print

Proceedings Paper

Katsevich-type algorithims for variable radius spiral cone-beam CT
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

To solve the long object problem, an exact and efficient algorithm has been recently developed by Katsevich. While the Katsevich algorithm only works with standard helical cone-beam scanning, there is an important need for nonstandard spiral cone-beam scanning. Specifically, we need a scanning spiral of variable radius for our newly proposed electron-beam CT/micro-CT prototype. In this paper, for variable radius spiral cone-beam CT we construct two Katsevich-type cone-beam reconstruction algorithms in the filtered backprojection (FBP) and backprojected filtration (BPF) formats, respectively. The FBP algorithm is developed based on the standard Katsevich algorithm, and consists of four steps: data differentiation, PI-line determination, slant filtration and weighted backprojection. The BPF algorithm is designed based on the scheme by Zou and Pan, and also consists four steps: data differentiation, PI-line determination, weighted backprojection and inverse Hilbert transform. Numerical experiments are conducted with mathematical phantoms.

Paper Details

Date Published: 26 October 2004
PDF: 8 pages
Proc. SPIE 5535, Developments in X-Ray Tomography IV, (26 October 2004); doi: 10.1117/12.559300
Show Author Affiliations
Hengyong Yu, Hangzhou Dianzi Univ. (China)
Yangbo Ye, Univ. of Iowa (United States)
Ge Wang, Univ. of Iowa (United States)

Published in SPIE Proceedings Vol. 5535:
Developments in X-Ray Tomography IV
Ulrich Bonse, Editor(s)

© SPIE. Terms of Use
Back to Top