Share Email Print

Proceedings Paper

MSE optimal bit-rate allocation in JPEG2000 Part 2 compression applied to a 3D data set
Author(s): Olga M. Kosheleva; Sergio D. Cabrera; Bryan E. Usevitch; Alberto Aguirre; Edward Vidal Jr.
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A bit rate allocation (BRA) strategy is needed to optimally compress three-dimensional (3-D) data on a per-slice basis, treating it as a collection of two-dimensional (2-D) slices/components. This approach is compatible with the framework of JPEG2000 Part 2 which includes the option of pre-processing the slices with a decorrelation transform in the cross-component direction so that slices of transform coefficients are compressed. In this paper, we illustrate the impact of a recently developed inter-slice rate-distortion optimal bit-rate allocation approach that is applicable to this compression system. The approach exploits the MSE optimality of all JPEG2000 bit streams for all slices when each is produced in the quality progressive mode. Each bit stream can be used to produce a rate-distortion curve (RDC) for each slice that is MSE optimal at each bit rate of interest. The inter-slice allocation approach uses all RDCs for all slices to optimally select an overall optimal set of bit rates for all the slices using a constrained optimization procedure. The optimization is conceptually similar to Post-Compression Rate-Distortion optimization that is used within JPEG2000 to optimize bit rates allocated to codeblocks. Results are presented for two types of data sets: a 3-D computed tomography (CT) medical image, and a 3-D metereological data set derived from a particular modeling program. For comparison purposes, compression results are also illustrated for the traditional log-variance approach and for a uniform allocation strategy. The approach is illustrated using two decorrelation tranforms (the Karhunen Loeve transform, and the discrete wavelet transform) for which the inter-slice allocation scheme has the most impact.

Paper Details

Date Published: 18 October 2004
PDF: 11 pages
Proc. SPIE 5561, Mathematics of Data/Image Coding, Compression, and Encryption VII, with Applications, (18 October 2004); doi: 10.1117/12.559161
Show Author Affiliations
Olga M. Kosheleva, Univ. of Texas/El Paso (United States)
Sergio D. Cabrera, Univ. of Texas/El Paso (United States)
Bryan E. Usevitch, Univ. of Texas/El Paso (United States)
Alberto Aguirre, Univ. of Texas/El Paso (United States)
Edward Vidal Jr., Army Research Lab. (United States)

Published in SPIE Proceedings Vol. 5561:
Mathematics of Data/Image Coding, Compression, and Encryption VII, with Applications
Mark S. Schmalz, Editor(s)

© SPIE. Terms of Use
Back to Top