Share Email Print
cover

Proceedings Paper

Vectorial solution of Kukhtarev equations for doubly doped crystals and optimal choice of recording directions in nonvolatile holographic storage
Author(s): Yu Zhou; Liren Liu; Zhu Luan; Lijuan Wang; Cuixia Dai
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Vectorial Kukhtarev equations modified for nonvolatile holographic recording in doubly doped crystals are analyzed, in which the bulk photovoltaic effect and external electrical field are both considered. On the basis of the small modulation approximation, both the analytic solution to space-charge field with time in recording phase and the steady-state solution in readout phase are deduced. Because bulk photovoltaic current is determined by polarized state of incident light, and refractive index change depends on not only the modulus of space-charge field but also its direction, the optimum design parameters for maximizing space-charge field are different from those for maximizing refractive index change. Therefore a trade-off exists between them. Based on the vectorial analyses of band transport model for nonvolatile holographic recording in doubly doped crystals, an optimal recording direction is given for maximizing refractive index change in doubly doped LiNbO3 :Fe:Mn crystals.

Paper Details

Date Published: 22 October 2004
PDF: 10 pages
Proc. SPIE 5560, Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications X, (22 October 2004); doi: 10.1117/12.558839
Show Author Affiliations
Yu Zhou, Shanghai Institute of Optics and Fine Mechanics (China)
Liren Liu, Shanghai Institute of Optics and Fine Mechanics (China)
Zhu Luan, Shanghai Institute of Optics and Fine Mechanics (China)
Lijuan Wang, Shanghai Institute of Optics and Fine Mechanics (China)
Cuixia Dai, Shanghai Institute of Optics and Fine Mechanics (China)


Published in SPIE Proceedings Vol. 5560:
Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications X
Francis T. S. Yu; Ruyan Guo; Shizhuo Yin, Editor(s)

© SPIE. Terms of Use
Back to Top