Share Email Print

Proceedings Paper

Passive fiber chip coupling of polymer PLC devices using hot embossing technique
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The optical interconnection between fibers and optical waveguides has been the most important factor for low-cost packaging of multi-channel PLC-type optical devices. Recently, polymer based PLC-type optical devices have been considered as an alternative fabrication method and are particularly attractive because of their satisfactory light guiding characteristics and easy fabrication process. In this study, a novel micro-mechanical passive alignment method for multi-channel polymer PLC devices has been designed and fabricated using a hot embossing technique. The main design issue is simultaneous fabrication of micro channels for single-mode waveguides and micro-pedestals for passive alignment on a polymer PLC surface in one step by hot embossing. Since the hot embossing process uses wet-etched silicon mould for pedestals, and alignment pits on silicon optical bench (SiOB) are also wet-etched in KOH solution, optical alignment was achieved through the simple insertion of micro pedestals into the alignment pits on SiOB. The hot embossed waveguide and passive alignment pedestals have been shown an accuracy of ± 0.5 μm. The propagation loss of fabricated single-mode polymer PLC was 0.83 dB/cm at a wavelength of 1550 nm, and passively aligned polymer PLC device with an accurate SiOB showed an average 0.67 dB coupling loss.

Paper Details

Date Published: 14 October 2004
PDF: 8 pages
Proc. SPIE 5523, Current Developments in Lens Design and Optical Engineering V, (14 October 2004); doi: 10.1117/12.556710
Show Author Affiliations
Jin Tae Kim, Electronics and Telecommunications Research Institute (South Korea)
Choon-Gi Choi, Electronics and Telecommunications Research Institute (South Korea)

Published in SPIE Proceedings Vol. 5523:
Current Developments in Lens Design and Optical Engineering V
Pantazis Z. Mouroulis; Warren J. Smith; R. Barry Johnson, Editor(s)

© SPIE. Terms of Use
Back to Top