Share Email Print

Proceedings Paper

Photovoltaic concentration at ultra-high flux
Author(s): Jeffrey M. Gordon; Eugene A. Katz; Daniel Feuermann; Mahmoud Huleihil
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Experimental results generated with novel miniature fiber-optic concentrators and commercial tandem III-V concentrator solar cells are reported, including (1) measured power densities up to 10,000 suns, (2) solar cell efficiencies in excess of 30% and (3) totally passive cooling. Mini-dish concentrators (a) generate uniform and individualized cell illumination, (b) allow assembly from readily available elements, and (c) are devoid of chromatic aberration. Measurements include the sensitivity of conversion efficiency to (i) power input, (ii) extreme flux inhomogeneities and (iii) the modified spectrum from fiber-optic concentrators. The weak sensitivity of cell performance to acute non-uniformities in flux map is addressed with a relatively simple model that regards the cell as an effective parallel connection of its uniformly irradiated areal elements. Our findings bode favorably for the feasibility of such concentrator designs at concentration levels as high as thousands of suns.

Paper Details

Date Published: 29 September 2004
PDF: 10 pages
Proc. SPIE 5529, Nonimaging Optics and Efficient Illumination Systems, (29 September 2004); doi: 10.1117/12.556681
Show Author Affiliations
Jeffrey M. Gordon, Ben-Gurion Univ. of the Negev (Israel)
Eugene A. Katz, Ben-Gurion Univ. of the Negev (Israel)
Daniel Feuermann, Ben-Gurion Univ. of the Negev (Israel)
Mahmoud Huleihil, Ben-Gurion Univ. of the Negev (Israel)

Published in SPIE Proceedings Vol. 5529:
Nonimaging Optics and Efficient Illumination Systems
Roland Winston; R. John Koshel, Editor(s)

© SPIE. Terms of Use
Back to Top