Share Email Print

Proceedings Paper

Computer-assisted 3-D design software for teaching neuro-ophthalmology of the oculomotor system and training new retinal surgery techniques
Author(s): Carl Glittenberg; Susanne Binder
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Purpose: To create a more effective method of demonstrating complex subject matter in ophthalmology with the use of high end, 3-D, computer aided animation and interactive multimedia technologies. Specifically, to explore the possibilities of demonstrating the complex nature of the neuroophthalmological basics of the human oculomotor system in a clear and non confusing way, and to demonstrate new forms of retinal surgery in a manner that makes the procedures easier to understand for other retinal surgeons. Methods and Materials: Using Reflektions 4.3, Monzoom Pro 4.5, Cinema 4D XL 5.03, Cinema 4D XL 8 Studio Bundle, Mediator 4.0, Mediator Pro 5.03, Fujitsu-Siemens Pentium III and IV, Gericom Webgine laptop, M.G.I. Video Wave 1.0 and 5, Micrografix Picture Publisher 6.0 and 8, Amorphium 1.0, and Blobs for Windows, we created 3-D animations showing the origin, insertion, course, main direction of pull, and auxiliary direction of pull of the six extra-ocular eye muscles. We created 3-D animations that (a) show the intra-cranial path of the relevant oculomotor cranial nerves and which muscles are supplied by them, (b) show which muscles are active in each of the ten lines of sight, (c) demonstrate the various malfunctions of oculomotor systems, as well as (d) show the surgical techniques and the challenges in radial optic neurotomies and subretinal surgeries. Most of the 3-D animations were integrated in interactive multimedia teaching programs. Their effectiveness was compared to conventional teaching methods in a comparative study performed at the University of Vienna. We also performed a survey to examine the response of students being taught with the interactive programs. We are currently in the process of placing most of the animations in an interactive web site in order to make them freely available to everyone who is interested. Results: Although learning how to use complex 3-D computer animation and multimedia authoring software can be very time consuming and frustrating, we found that once the programs are mastered they can be used to create 3-D animations that drastically improve the quality of medical demonstrations. The comparative study showed a significant advantage of using these technologies over conventional teaching methods. The feedback from medical students, doctors, and retinal surgeons was overwhelmingly positive. A strong interest was expressed to have more subjects and techniques demonstrated in this fashion. Conclusion: 3-D computer technologies should be used in the demonstration of all complex medical subjects. More effort and resources need to be given to the development of these technologies that can improve the understanding of medicine for students, doctors, and patients alike.

Paper Details

Date Published: 13 July 2004
PDF: 11 pages
Proc. SPIE 5314, Ophthalmic Technologies XIV, (13 July 2004); doi: 10.1117/12.555626
Show Author Affiliations
Carl Glittenberg, Ludwig Boltzmann Institute of Retinology and Biomicroscopic Laser Surgery (Austria)
Susanne Binder, Rudolf Foundation Clinic (Austria)

Published in SPIE Proceedings Vol. 5314:
Ophthalmic Technologies XIV
Fabrice Manns; Per G. Soderberg; Arthur Ho, Editor(s)

© SPIE. Terms of Use
Back to Top