Share Email Print
cover

Proceedings Paper

AdaptSAPS utility for adaptive ATR development and assessment
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The ATR community has a strong and growing interest in ATR systems that adapt to changing circumstances and is developing means to solve these dynamic and difficult ATR problems. To facilitate this research, the AFRL COMPASE and SDMS organizations have developed an AdaptSAPS framework for developing and assessing such adaptive ATR systems. This framework, in the form of AdaptSAPS Version 1.0, provides MATLAB code, organized procedures, and an organized database for adaptive ATR systems. SAIC is applying their Ellipse Detector (ED) to this framework to validate the AdaptSAPS procedures and to test the AdaptSAPS database. The ED previously has shown utility on a variety of sensors and ATR problems. Although computationally efficient, the ED is more complex and much more powerful than simpler detectors such as a two parameter CFAR. However, the ED is not currently implemented as an adaptive ATR. In this paper, we show the utility of the AdaptSAPS framework for developing and assessing a non-trivial adaptive ATR by embedding the SAIC ED in the AdaptSAPS framework. We point out the strong points and weak points of AdaptSAPS Version 1.0 and recommend enhancements for future versions. In particular, we comment on AdaptSAPS as delivered, the current missions and data bases in AdaptSAPS, and the current performance measures in AdaptSAPS.

Paper Details

Date Published: 2 September 2004
PDF: 9 pages
Proc. SPIE 5427, Algorithms for Synthetic Aperture Radar Imagery XI, (2 September 2004); doi: 10.1117/12.555515
Show Author Affiliations
Arnold C. Williams, Science Applications International Corp. (United States)
Peter W. Pachowicz, George Mason Univ. (United States)
James D. Leonard, Air Force Research Lab. (United States)


Published in SPIE Proceedings Vol. 5427:
Algorithms for Synthetic Aperture Radar Imagery XI
Edmund G. Zelnio; Frederick D. Garber, Editor(s)

© SPIE. Terms of Use
Back to Top