Share Email Print
cover

Proceedings Paper

The role of humans and robots in the assembly of large infrared observatories
Author(s): Edward J. Friedman; Tracey Espero
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Many authors have endorsed the concept of assembly of large optics in space and have pointed out the technology needs for astronauts, infrastructure, robots and the observatories themselves. In this paper, we consider the technical issues associated with the integration and test in space of large optics during the next 15 years or so, when human activity is largely confined to low Earth orbit (LEO). We identify technical areas that need development and define a first version of the processes that might be used to create successful telescope missions that are tested in space. We identify a pathway that supports scalable solutions for very large systems necessary for imaging planets in other solar systems and other magnificent science. The investment in space integration and testing technology will return important dividends to designers of large space optics of the future. This approach to space optics testing is attractive because it overcomes the limits of ground testing associated with large test chambers, star simulators and the effects of gravity. It also directly benefits from, and supports, the technology and infrastructure investments about to be made by the new NASA Exploration Systems Enterprise, allowing both observatories and exploration missions to be assembled.

Paper Details

Date Published: 12 October 2004
PDF: 12 pages
Proc. SPIE 5487, Optical, Infrared, and Millimeter Space Telescopes, (12 October 2004); doi: 10.1117/12.552395
Show Author Affiliations
Edward J. Friedman, Boeing Co. (United States)
Tracey Espero, Boeing Co. (United States)


Published in SPIE Proceedings Vol. 5487:
Optical, Infrared, and Millimeter Space Telescopes
John C. Mather, Editor(s)

© SPIE. Terms of Use
Back to Top