Share Email Print
cover

Proceedings Paper

Improving XMM-Newton EPIC pn data at low energies: method and application to the Vela SNR
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

High quantum efficiency over a broad spectral range is one of the main properties of the EPIC pn camera on-board XMM-Newton. The quantum efficiency rises from ~75% at 0.2 keV to ~100% at 1 keV, stays close to 100% until 8 keV, and is still ~90% at 10 keV. The EPIC pn camera is attached to an X-ray telescope which has the highest collecting area currently available, in particular at low energies (more than 1400 cm2 between 0.1 and 2.0 keV). Thus, this instrument is very sensitive to the low-energy X-ray emission. However, X-ray data at energies below ~0.2 keV are considerably affected by detector effects, which become more and more important towards the lowest transmitted energies. In addition to that, pixels which have received incorrect offsets during the calculation of the offset map at the beginning of each observation, show up as bright patches in low-energy images. Here we describe a method which is not only capable of suppressing the contaminations found at low energies, but which also improves the data quality throughout the whole EPIC pn spectral range. This method is then applied to data from the Vela supernova remnant.

Paper Details

Date Published: 11 October 2004
PDF: 12 pages
Proc. SPIE 5488, UV and Gamma-Ray Space Telescope Systems, (11 October 2004); doi: 10.1117/12.551307
Show Author Affiliations
Konrad Dennerl, Max-Planck-Institut fur extraterrestrische Physik (Germany)
Bernd Aschenbach, Max-Planck-Institut fur extraterrestrische Physik (Germany)
Ulrich G. Briel, Max-Planck-Institut fur extraterrestrische Physik (Germany)
Hermann Brunner, Max-Planck-Institut fur extraterrestrische Physik (Germany)
Vadim Burwitz, Max-Planck-Institut fur extraterrestrische Physik (Germany)
Jakob Englhauser, Max-Planck-Institut fur extraterrestrische Physik (Germany)
Max-Planck-Institut Halbleiterlabor (Germany)
Michael J. Freyberg, Max-Planck-Institut fur extraterrestrische Physik (Germany)
Max-Planck-Institut Roentgentestanlage (Germany)
Frank Haberl, Max-Planck-Institut fur extraterrestrische Physik (Germany)
Gisela Hartner, Max-Planck-Institut fur extraterrestrische Physik (Germany)
Max-Planck-Institut Roentgentestanlage (Germany)
Anatoli F. Iyudin, Max-Planck-Institut fur extraterrestrische Physik (Germany)
Eckhard Kendziorra, Eberhard-Karls-Univ. Tuebingen (Germany)
Norbert Meidinger, Max-Planck-Institut fur extraterrestrische Physik (Germany)
Max-Planck-Institut Halbleiterlabor (Germany)
Elmar Pfeffermann, Max-Planck-Institut fur extraterrestrische Physik (Germany)
Wolfgang Pietsch, Max-Planck-Institut fur extraterrestrische Physik (Germany)
Lothar Strueder, Max-Planck-Institut fur extraterrestrische Physik (Germany)
Max-Planck-Institut Halbleiterlabor (Germany)
Vyacheslav E. Zavlin, Max-Planck-Institut fur extraterrestrische Physik (Germany)
Observatoire Astronomique de Strasbourg, CNRS (France)


Published in SPIE Proceedings Vol. 5488:
UV and Gamma-Ray Space Telescope Systems
Guenther Hasinger; Martin J. L. Turner, Editor(s)

© SPIE. Terms of Use
Back to Top