Share Email Print
cover

Proceedings Paper

Rubber to rigid, clamped to undamped: toward composite materials with wide-range controllable stiffness and damping
Author(s): Roy D. Kornbluh; Harsha Prahlad; Ron Pelrine; Scott Stanford; Marcus A. Rosenthal; Philip A. von Guggenberg
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Composite materials have increased the range of mechanical properties available to the design engineer compared with the range afforded by single component materials, leading to a revolution in capabilities. Nearly all commonly used engineering materials, including these composite materials, however, have a great limitation; that is, once their mechanical properties are set they cannot be changed. Imagine a material that could, under electric control, change from rubbery to rigid. Such composite "meta-materials" with stiffness and damping properties that can be electrically controlled over a wide range would find widespread application in areas such as morphing structures, tunable and conformable devices for human interaction, and greatly improved vibration control. Such a technology is a breakthrough capability because it fundamentally changes the paradigm of composite materials having a fixed set of mechanical properties. These electronically controllable composites may be the basis of discrete devices with tunable impedance. The composites can also be multifunctional materials: They can minimize size and mass by acting not only as a tunable impedance device, but also as a supporting structure or protective skin. Current approaches to controllable mechanical properties include composites with materials that have intrinsically variable properties such as shape memory alloys or polymers, or magnetorheological fluids, or composites that have active materials such as piezoelectrics, magnetostrictives, and newly emerging electroactive polymers. Each of these materials is suitable for some applications, but no single technology is capable of fast and efficient response that can produce a very wide range of stiffness and damping with a high elongation capability, that is, go from rubber to rigid. Such a material would be capable of a change in its maximum elastic energy of deformation of 50,000 J/cm3. No existing material is within three orders of magnitude of this value. Similarly, no material appears capable of going from a very lightly damped to a very heavily damped condition over a wide range of motion. We suggest an approach based on composites whose meso-scale structure can be changed with actuation or change in intrinsic properties. Passive composite meta-materials have been demonstrated, however, such active composite meta-materials have not yet been demonstrated.

Paper Details

Date Published: 29 July 2004
PDF: 15 pages
Proc. SPIE 5388, Smart Structures and Materials 2004: Industrial and Commercial Applications of Smart Structures Technologies, (29 July 2004); doi: 10.1117/12.548971
Show Author Affiliations
Roy D. Kornbluh, SRI International (United States)
Harsha Prahlad, SRI International (United States)
Ron Pelrine, SRI International (United States)
Scott Stanford, SRI International (United States)
Marcus A. Rosenthal, SRI International (United States)
Philip A. von Guggenberg, SRI International (United States)


Published in SPIE Proceedings Vol. 5388:
Smart Structures and Materials 2004: Industrial and Commercial Applications of Smart Structures Technologies
Eric H. Anderson, Editor(s)

© SPIE. Terms of Use
Back to Top