Share Email Print

Proceedings Paper

Thermodynamics of absorbing solids during short-pulse laser ablation
Author(s): Patrick Lorazo; Danny Perez; Laurent J. Lewis; Michel Meunier
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The fundamental mechanisms of matter removal involved in the interaction of short laser pulses with absorbing solids have been investigated using molecular-dynamics/Monte~Carlo simulations. This is accomplished under the two following assumptions: (i) the elementary thermodynamic properties of targets (metals and semiconductors) are adequately described by empirical potentials; (ii) in the regime where ablation is thermal, the complete time evolution of the system can be followed in p-T-P space and the result mapped onto the equilibrium phase diagram of the material. We find remarkable similarities in the physical pathways to ablation in metals and semiconductors for pulse durations ranging from 200 fs to 400 ps: (i) under conditions of isochoric heating and rapid adiabatic cooling with femtosecond pulses, several mechanisms can simultaneously account for matter removal in the target: spallation, phase explosion, vaporization, and fragmentation; the latter is identified for the first time in the context of laser ablation. (ii) Under nonadiabatic cooling with picosecond pulses, ablation is driven by a "trivial" fragmentation process in the metallic, supercritical fluid; this suggests a pulse duration upper limit for phase explosion of ~ 10-11 s.

Paper Details

Date Published: 20 September 2004
PDF: 12 pages
Proc. SPIE 5448, High-Power Laser Ablation V, (20 September 2004); doi: 10.1117/12.548744
Show Author Affiliations
Patrick Lorazo, Ecole Polytechnique de Montreal (Canada)
Univ. de Montreal (Canada)
Danny Perez, Univ. de Montreal (Canada)
Laurent J. Lewis, Univ. de Montreal (Canada)
Michel Meunier, Ecole Polytechnique de Montreal (Canada)

Published in SPIE Proceedings Vol. 5448:
High-Power Laser Ablation V
Claude R. Phipps, Editor(s)

© SPIE. Terms of Use
Back to Top