Share Email Print
cover

Proceedings Paper

High-pressure gravity-independent singlet oxygen generator, laser nozzle, and iodine injection system for the chemical oxygen-iodine laser
Author(s): George Emanuel
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A novel approach is outlined for a singlet oxygen generator (SOG), a laser minimum length nozzle (MLN), and an iodine injector system for a chemical oxygen-iodine laser (COIL). A unified approach, referred to as a SOG/MLN/I2 system, is partly based on past experimental work. For instance, the SOG concept stems from sparger technology and a KSY fesibility experiment. A MLN with a curved sonic line is used for the laser nozzle, and slender struts are used for the injection, in the downstream direction, of iodine/helium vapor. The heated struts are located downstream of the nozzle's throat. The engineering logic behind the approach is discussed; it has a diversity of potential system benefits relative to current technology. These include a compact, scalable laser that can operate in space. The SOG operates at a significantly higher pressure with a high O2(1Δ) yield. In addition, basic hydrogen peroxide reconditioning is not required, a water vapor removal system is not required, and diluent may be unnecessary, although useful for pressure recovery. The impact on a COIL system in terms of power, efficiency, and pressure recovery is briefly assessed.

Paper Details

Date Published: 20 September 2004
PDF: 9 pages
Proc. SPIE 5448, High-Power Laser Ablation V, (20 September 2004); doi: 10.1117/12.548671
Show Author Affiliations
George Emanuel, KSY Corp. (United States)


Published in SPIE Proceedings Vol. 5448:
High-Power Laser Ablation V
Claude R. Phipps, Editor(s)

© SPIE. Terms of Use
Back to Top