Share Email Print
cover

Proceedings Paper

Decentralized sensing and tracking for UAV scheduling
Author(s): Valentine Crespi; Wayne W. Chung; Alex B. Jordan
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper presents a fully automated and decentralized surveillance system for the problem of detecting and possibly tracking mobile unknown ground vehicles in a bounded area. The system consists ideally of unmanned aerial vehicles (UAVs) and unattended fixed sensors with limited communication and detection range that are deployed in the area of interest. Each component of the system (UAV and/or sensor) is completely autonomous and programmed to scan the area searching for targets and share its knowledge with other components within communication range. We assume that both UAVs and sensors have similar computing and sensing capabilities and differ only in their mobility (sensors are stationary while UAVs are mobile). Gathered information is reported to a base station (monitor) that computes an estimate of the global state of the system and quantifies the quality of the surveillance based on a measure of the uncertainty on the number and position of the targets overtime. The present solution has been achieved through a robotic implementation of a software simulation that was in turn realized under the principles of a novel top-down methodology for the design of provably performant agent-based control systems. In this paper we provide a description of our solution including the distributed algorithms that have been employed in the control of the UAV navigation and monitoring. Finally we show the results of an novel experimental performance analysis of our surveillance system.

Paper Details

Date Published: 15 September 2004
PDF: 12 pages
Proc. SPIE 5403, Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense III, (15 September 2004); doi: 10.1117/12.548169
Show Author Affiliations
Valentine Crespi, California State Univ./Los Angeles (United States)
Wayne W. Chung, Dartmouth College (United States)
Alex B. Jordan, Dartmouth College (United States)


Published in SPIE Proceedings Vol. 5403:
Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense III
Edward M. Carapezza, Editor(s)

© SPIE. Terms of Use
Back to Top