Share Email Print

Proceedings Paper

High-power laser plasma EUV light source for lithography
Author(s): Akira Endo
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The main technological challenge of a future extreme ultraviolet (EUV) light source is the required average power of 115 W at the intermediate focus. High repetition rate laser produced plasma (LPP) sources are very promising to face this challenge. We report the current status of the laser produced light source system we started to develop in 2002. The system consists of the following main components: The plasma target is a liquid xenon jet wih a maximum diameter of 50 micrometer and a velocity of more than 30 m/s. A Nd:YAG laser oscillating at 1064 nm produces the plasma. The laser is a master oscillator power amplifier (MOPA) configuration with a maximum repetition rate of 10 kHz and an average power of 1 kW. The EUV system currently delivers an average EUV in-band power of 4 W (2% bandwidth, 2π sr) having a stability of 0.54% (1σ, 50-pulse moving average). Related to future collector mirror lifetime considerations, a magnetic confinement scheme is evaluated for fast ions mitigation.

Paper Details

Date Published: 20 September 2004
PDF: 8 pages
Proc. SPIE 5448, High-Power Laser Ablation V, (20 September 2004); doi: 10.1117/12.548011
Show Author Affiliations
Akira Endo, Extreme Ultraviolet Lithography System Development Association (Japan)

Published in SPIE Proceedings Vol. 5448:
High-Power Laser Ablation V
Claude R. Phipps, Editor(s)

© SPIE. Terms of Use
Back to Top