Share Email Print

Proceedings Paper

Measured iron-gallium alloy tensile properties under magnetic fields
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Tension testing is used to identify Galfenol material properties under low level DC magnetic bias fields. Dog bone shaped specimens of single crystal Fe100-xGax, where 17≤x≤33, underwent tensile testing along two crystalographic axis orientations, [110] and [100]. The material properties being investigated and calculated from measured quantities are: Young's modulus and Poisson's ratio. Data are presented that demonstrate the dependence of these material properties on applied magnetic field levels and provide a preliminary assessment of the trends in material properties for performance under varied operating conditions. The elastic properties of Fe-Ga alloys were observed to be increasingly anisotropic with rising Ga content for the stoichiometries examined. The largest elastic anisotropies were manifested in [110] Poisson's ratios of as low as -0.63 in one specimen. This negative Poisson's ratio creates a significant in-plane auxetic behavior that could be exploited in applications that capitalize on unique area effects produced under uniaxial loading.

Paper Details

Date Published: 21 July 2004
PDF: 11 pages
Proc. SPIE 5387, Smart Structures and Materials 2004: Active Materials: Behavior and Mechanics, (21 July 2004); doi: 10.1117/12.547548
Show Author Affiliations
Jin-Hyeong Yoo, Univ. of Maryland/College Park (United States)
Alison B. Flatau, Univ. of Maryland/College Park (United States)

Published in SPIE Proceedings Vol. 5387:
Smart Structures and Materials 2004: Active Materials: Behavior and Mechanics
Dimitris C. Lagoudas, Editor(s)

© SPIE. Terms of Use
Back to Top