Share Email Print
cover

Proceedings Paper

Reducing aerodynamic vibration with piezoelectric actuators: a genetic algorithm optimization
Author(s): Zhenning Hu; Mark Jakiela; Dale M. Pitt; Jay K. Burnham
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Modern high performance aircraft fly at high speeds and high angles of attack. This can result in "buffet" aerodynamics, an unsteady turbulent flow that causes vibrations of the wings, tails, and body of the aircraft. This can result in decreased performance and ride quality, and fatigue failures. We are experimenting with controlling these vibrations by using piezoceramic actuators attached to the inner and outer skin of the aircraft. In this project, a tail or wing is investigated. A "generic" tail finite element model is studied in which individual actuators are assumed to exactly cover individual finite elements. Various optimizations of the orientations and power consumed by these actuators are then performed. Real coded genetic algorithms are used to perform the optimizations and a design space approximation technique is used to minimize costly finite element runs. An important result is the identification of a power consumption threshold for the entire system. Below the threshold, vibration control performance of optimized systems decreases with decreasing values of power supplied to the entire system.

Paper Details

Date Published: 29 July 2004
PDF: 12 pages
Proc. SPIE 5388, Smart Structures and Materials 2004: Industrial and Commercial Applications of Smart Structures Technologies, (29 July 2004); doi: 10.1117/12.547299
Show Author Affiliations
Zhenning Hu, Washington Univ. (United States)
Mark Jakiela, Washington Univ. (United States)
Dale M. Pitt, Boeing Co. (United States)
Jay K. Burnham, Boeing Co. (United States)


Published in SPIE Proceedings Vol. 5388:
Smart Structures and Materials 2004: Industrial and Commercial Applications of Smart Structures Technologies
Eric H. Anderson, Editor(s)

© SPIE. Terms of Use
Back to Top