Share Email Print
cover

Proceedings Paper

Electrostrictive polymers for mechanical energy harvesting
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Recent advances in electroactive polymers including high field induced strain, high elastic energy density (~1 J/cm3), and relatively high energy conversion efficiency, approaching those of natural muscles, create new opportunities for many applications. Harvesting electric energy from mechanical sources such as a soldier during walking is one such example. Several electroactive polymers developed recently are briefly reviewed. The paper further presents analysis on the key steps in achieving energy harvesting effectively. It is shown that one may make use of smart electronics to modify the electric boundary conditions in the electroactive polymers during the energy harvesting cycle to realize higher energy conversion efficiency in the systems compared with the efficiency of the material itself. Due to the fact that the energy density of the electromagnetic based energy harvesting devices scales with the square root of the device volume, the paper shows that the electroactive polymers based energy harvesting devices exhibit higher energy density and therefore are more suitable for this application.

Paper Details

Date Published: 27 July 2004
PDF: 12 pages
Proc. SPIE 5385, Smart Structures and Materials 2004: Electroactive Polymer Actuators and Devices (EAPAD), (27 July 2004); doi: 10.1117/12.547133
Show Author Affiliations
Yiming Liu, The Pennsylvania State Univ. (United States)
Kailiang Ren, The Pennsylvania State Univ. (United States)
Heath F. Hofmann, The Pennsylvania State Univ. (United States)
Qiming Zhang, The Pennsylvania State Univ. (United States)


Published in SPIE Proceedings Vol. 5385:
Smart Structures and Materials 2004: Electroactive Polymer Actuators and Devices (EAPAD)
Yoseph Bar-Cohen, Editor(s)

© SPIE. Terms of Use
Back to Top