Share Email Print
cover

Proceedings Paper

A kinetic model of NMDA ion channel under varying noise
Author(s): Rubin Wang; Hao Chen; Zhikang Zhang
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

It is well known that when transmitters are applied to the postsynaptic membrane, the resulting depolarization is noisy that is due to the random opening and closing of the ion channels activated by the transmitters[1]. In other words, the energy of noise is associated with changes in ion channels. On the base of these ideas, we explore a model of relationship between NMDA (n-methyl-D-aspartate) ion channels and LTP (long-term synaptic potentiation). We have proved that NMDA ion channel and calcium-dependent protein kinases, which are the triggers for the inducement of LTP, could be regarded as “molecular machines”. In this system all of these molecules require energy and the energy of the system is supplied from the random motion of water molecules generated through heat energy of ATP hydrolysis[2]. So the appropriate framework to describe them comes from bioenergetics. Models of LTP previously reported are all on the macroscopic level [3-7]. Instead, we research a model at the molecular level by applying energy parameters [8].

Paper Details

Date Published: 25 May 2004
PDF: 5 pages
Proc. SPIE 5467, Fluctuations and Noise in Biological, Biophysical, and Biomedical Systems II, (25 May 2004); doi: 10.1117/12.547033
Show Author Affiliations
Rubin Wang, Donghua Univ. (China)
Ocean Univ. of China (China)
Hao Chen, Donghua Univ. (China)
Zhikang Zhang, Shanghai Telecommunications Corp. (China)


Published in SPIE Proceedings Vol. 5467:
Fluctuations and Noise in Biological, Biophysical, and Biomedical Systems II
Derek Abbott; Sergey M. Bezrukov; Andras Der; Angel Sanchez, Editor(s)

© SPIE. Terms of Use
Back to Top