Share Email Print
cover

Proceedings Paper

Bit noise from an optical logic gate with laser diodes
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Output bits from an optical logic cell present noise due to the type of technique used to obtain the Boolean functions of two input data bits. We have simulated the behavior of an optically programmable logic cell working with Fabry Perot-laser diodes of the same type employed in optical communications (1550nm) but working here as amplifiers. We will report in this paper a study of the bit noise generated from the optical non-linearity process allowing the Boolean function operation of two optical input data signals. Two types of optical logic cells will be analyzed. Firstly, a classical “on-off” behavior, with transmission operation of LD amplifier and, secondly, a more complicated configuration with two LD amplifiers, one working on transmission and the other one in reflection mode. This last configuration has nonlinear behavior emulating SEED-like properties. In both cases, depending on the value of a “1” input data signals to be processed, a different logic function can be obtained. Also a CW signal, known as control signal, may be apply to fix the type of logic function. The signal to noise ratio will be analyzed for different parameters, as wavelength signals and the hysteresis cycles regions associated to the device, in relation with the signals power level applied. With this study we will try to obtain a better understanding of the possible effects present on an optical logic gate with Laser Diodes.

Paper Details

Date Published: 25 May 2004
PDF: 10 pages
Proc. SPIE 5468, Fluctuations and Noise in Photonics and Quantum Optics II, (25 May 2004); doi: 10.1117/12.546670
Show Author Affiliations
Ana P. Gonzalez-Marcos, Univ. Politecnica de Madrid (Spain)
Jose A. Martin-Pereda, Univ. Politecnica de Madrid (Spain)
Antonio Hurtado, Univ. Politecnica de Madrid (Spain)


Published in SPIE Proceedings Vol. 5468:
Fluctuations and Noise in Photonics and Quantum Optics II
Peter Heszler, Editor(s)

© SPIE. Terms of Use
Back to Top